Research Article

Jacob Salazar*, Jaime Mora and Leszek Demkowicz

Alternative Enriched Test Spaces in the DPG Method for Singular Perturbation Problems

https://doi.org/10.1515/cmam-2018-0207 Received August 10, 2018; accepted January 29, 2019

Abstract: We propose and investigate the application of alternative enriched test spaces in the discontinuous Petrov–Galerkin (DPG) finite element framework for singular perturbation linear problems, with an emphasis on 2D convection-dominated diffusion. Providing robust L^2 error estimates for the field variables is considered a convenient feature for this class of problems, since this norm would not account for the large gradients present in boundary layers. With this requirement in mind, Demkowicz and others have previously formulated special test norms, which through DPG deliver the desired L^2 convergence. However, robustness has only been verified through numerical experiments for *tailored* test norms which are problem-specific, whereas the *quasi-optimal* test norm (not problem specific) has failed such tests due to the difficulty to resolve the optimal test functions sought in the DPG technology. To address this issue (i.e. improve optimal test functions resolution for the quasi-optimal test norm), we propose to discretize the local test spaces with functions that depend on the perturbation parameter ϵ . Explicitly, we work with B-spline spaces defined on an ϵ -dependent Shishkin submesh. Two examples are run using adaptive h-refinement to compare the performance of proposed test spaces with that of standard test spaces. We also include a modified norm and a continuation strategy aiming to improve time performance and briefly experiment with these ideas.

Keywords: DPG, Convection-Diffusion, Singular Perturbation

MSC 2010: 65N30

1 Introduction

1.1 DPG Fundamentals

Suppose we have an abstract variational problem: find $\mathfrak{u} \in \mathscr{U}$ such that

$$b(\mathfrak{u},\mathfrak{v}) = \ell(\mathfrak{v})$$
 for all $\mathfrak{v} \in \mathscr{V}$

where both trial space $\mathscr U$ and test space $\mathscr V$ are Hilbert spaces, $b(\cdot,\cdot):\mathscr U\times\mathscr V\to\mathbb R$ is a bilinear continuous functional that satisfies the inf-sup condition, and $\ell\in\mathscr V'$.

In this non-symmetric functional setting (i.e. \mathscr{U} may be different from \mathscr{V}), we define the energy norm $\|\cdot\|_E$ on \mathscr{U} through the bilinear form b and the chosen norm on \mathscr{V} , $\|\cdot\|_V$, as follows:

$$\|\mathbf{u}\|_{E} = \sup_{\mathbf{v} \in \mathcal{V}} \frac{|b(\mathbf{u}, \mathbf{v})|}{\|\mathbf{v}\|_{\mathcal{V}}}.$$
 (1.1)

Jaime Mora, Leszek Demkowicz, Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, 201 E 24th St, Austin, TX 78712, USA, e-mail: jmorapaz@ices.utexas.edu, leszek@ices.utexas.edu

^{*}Corresponding author: Jacob Salazar, Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, 201 E 24th St, Austin, TX 78712, USA, e-mail: jacobess@utexas.edu

If we define an operator $\mathscr{B}:\mathscr{U}\to\mathscr{V}'$ by $\mathscr{B}\mathfrak{u}:=b(\mathfrak{u},\cdot)$, then (1.1) is equivalent to

$$\|\mathfrak{u}\|_E = \sup_{\mathfrak{v} \in \mathcal{V}} \frac{|\langle \mathcal{B}\mathfrak{u}, \mathfrak{v} \rangle|}{\|\mathfrak{v}\|_{\mathcal{V}}} = \|\mathcal{B}\mathfrak{u}\|_{\mathcal{V}}.$$

1.1.1 The Ideal DPG

The ideal Discontinuous Petrov–Galerkin (DPG) method is a minimum residual method that delivers the best approximation error in the energy norm, which is the same as minimizing the residual in the dual test space norm; that is, given a discrete trial subspace $\mathcal{U}^h \subset \mathcal{U}$ with dimension N_h , if $\mathfrak{u} \in \mathcal{U}$ is the exact solution, the ideal DPG solution $\mathfrak{u}_h \in \mathcal{U}^h$ satisfies

$$\|\mathbf{u} - \mathbf{u}_h\|_E = \inf_{\mathbf{w}_h \in \mathcal{U}^h} \|\mathbf{u} - \mathbf{w}_h\|_E$$

$$= \inf_{\mathbf{w}_h \in \mathcal{U}^h} \|\mathcal{B}(\mathbf{u} - \mathbf{w}_h)\|_{\mathcal{V}'}$$

$$= \inf_{\mathbf{w}_h \in \mathcal{U}^h} \|\ell - \mathcal{B}\mathbf{w}_h\|_{\mathcal{V}'}.$$
(1.2)

Now, let $\mathcal{R}_{\mathscr{V}}:\mathscr{V}\to\mathscr{V}'$ be the Riesz map of \mathscr{V} associated to norm $\|\cdot\|_{\mathscr{V}}$. Then (1.2) turns into

$$\|\mathfrak{u} - \mathfrak{u}_h\|_E = \inf_{\mathfrak{w}_h \in \mathcal{U}^h} \|\mathscr{R}_{\mathscr{V}}^{-1}(\ell - \mathscr{B}\mathfrak{w}_h)\|_{\mathscr{V}}. \tag{1.3}$$

It is shown in [8] how after working out the minimization in (1.3), the ideal DPG methodology corresponds to the following *automatically stable*¹ Petrov–Galerkin formulation: find $u_h \in \mathcal{U}^h$ such that

$$b(\mathfrak{u}_h,\mathfrak{v}_h) = \ell(\mathfrak{v}_h) \quad \text{for all } \mathfrak{v}_h \in \mathscr{V}^h := \mathbf{T}\mathscr{U}^h \subset \mathscr{V}, \tag{1.4}$$

with $\mathbf{T}: \mathcal{U} \to \mathcal{V}$ being the *trial-to-test* map, defined by $\mathbf{T} := \mathcal{R}_{\mathcal{V}}^{-1} \mathcal{B}$. The functions living in \mathcal{V}^h are referred to as the *optimal test functions*.

By Babuška's theorem, the following stability estimate holds for the ideal DPG [8]:

$$\|u - u_h\|_{\mathscr{U}} \le \frac{M}{v_h} \inf_{w_h} \|u - w_h\|_{\mathscr{U}} \le \frac{M}{v} \inf_{w_h} \|u - w_h\|_{\mathscr{U}}, \tag{1.5}$$

where M > 0 is the continuity constant of bilinear functional b, and y_h is its discrete inf-sup constant. When the trial space is equipped with the energy norm, it can be shown that (by design) M = 1 and y = 1, where y is the inf-sup constant in the continuous setting (therefore retrieving (1.2)).

1.1.2 DPG in Practice

Optimal test functions computation (including the inversion of the Riesz map $\mathcal{R}_{\mathscr{V}}$) is achieved by solving the auxiliary variational problem

$$\begin{cases}
 v = \mathbf{T}u_h \in \mathcal{V}, \\
 (v, \delta v)_{\mathcal{V}} = b(u_h, \delta v), \quad \delta v \in \mathcal{V}.
\end{cases}$$
(1.6)

This infinite-dimensional problem is approximated with a finite-dimensional *enriched test space* $\mathcal{V}^r \subset \mathcal{V}$ (with dimension $N_r \geq N_h$). The stability of the ideal DPG is carried over to the practical DPG whenever there exists a Fortin operator $\mathbf{F}_r : \mathcal{V} \to \mathcal{V}^r$, which must satisfy appropriate orthogonality and continuity conditions [8]. Let C^r be the continuity constant of \mathbf{F}_r ; then estimate (1.5) becomes

$$\|u - u_h\|_{\mathscr{U}} \le \frac{C^r M}{v} \inf_{w_h} \|u - w_h\|_{\mathscr{U}}.$$
 (1.7)

¹ The discrete inf-sup constant is bounded below by the continuous one, $\gamma_h \ge \gamma$.

The only modification to (1.4) is to replace the trial-to-test operator by its counterpart into the enriched test $\operatorname{space} \mathbf{T}^r := \mathscr{R}_{\mathscr{V}^r}^{-1}\mathscr{B}, \text{ where } \mathscr{R}_{\mathscr{V}^r}^{-1} \text{ is the (Bubnov-)} Galerkin approximation of } \mathscr{R}_{\mathscr{V}}^{-1} \text{ with } \mathscr{V}^r. \text{ In order to carry out } \mathscr{R}_{\mathscr{V}^r}^{-1} = \mathscr{R}_{\mathscr{V}^r}^{-1}\mathscr{R}_{\mathscr{V}^r}$ such an approximation, we begin by taking a basis of the enriched test space $\{v_k^r\}_{k=1}^{N_r}$ and one for the trial space $\{u_i\}_{i=1}^{N_h}$. Equation (1.6) yields the following algebraic problem:

$$Gg_{i,opt} = B_i, \quad i = 1, \ldots, N_h,$$

where $g_{i,\text{opt}}$ is the vector of coefficients of $v_{i,\text{opt}} = \mathbf{T}^r u_i^h$ in the enriched test space basis, B_i is the *i*-th column of the stiffness matrix B and G is the Gram matrix of \mathcal{V}^r . The coefficients of B and G are defined by

$$\mathsf{B}_{ji} := b(\mathfrak{u}_i^h, \mathfrak{v}_i^r), \quad \mathsf{G}_{kj} := (\mathfrak{v}_i^r, \mathfrak{v}_k^r)_{\mathscr{V}}.$$

Hence, the near-optimal test functions $\{v_{i,opt}\}_{i=1}^{N_h}$ are simply

$$v_{i,\text{opt}} = \sum_{k=1}^{N_r} (g_{i,\text{opt}})_k v_k^r, \quad i = 1, \dots, N_h,$$
(1.8)

In practice, unless we wish to explicitly compute the near-optimal test functions, the approximation to (1.4) is set as an equivalent mixed formulation, where the solution is obtained without explicit implementation of (1.8). For details see [9]. If the DPG solution is expressed as $u^h = \sum u_i^h d_i$, its coefficient vector **d** is then the solution to the discrete problem

$$B^{\mathsf{T}}G^{-1}Bd = B^{\mathsf{T}}G^{-1}I$$
.

with $l_k := \ell(v_k^r)$. It is important to mention that matrices G and $B^TG^{-1}B$ are Hermitian positive definite and for broken test spaces, introduced later, they become also sparse.

1.2 The Optimal Test Norm

If we wish to minimize the error in a user-prescribed norm, a question arises when looking at (1.4): Which test norm should be defined on \mathcal{V} to make that happen?

In [20] Zitelli, Muga, Demkowicz, Gopalakrishnan, Pardo and Calo introduced the concept of the optimal test norm (a notion of optimality that must not be confused with that of the optimal test functions), which we explain here. Given a norm on our trial space $\|\cdot\|_{\mathscr{U}}$, and under the assumption that conjugate operator $\mathscr{B}':\mathscr{V}''\sim\mathscr{V}\to\mathscr{U}'$ is injective, the so called optimal test norm is defined by

$$\|\mathfrak{v}\|_{\mathscr{V},\mathrm{opt}}\coloneqq \sup_{\mathfrak{u}\in\mathscr{U}}\frac{|b(\mathfrak{u},\mathfrak{v})|}{\|\mathfrak{u}\|_{\mathscr{U}}}.$$

Recalling (1.1), we deduce that the use of this norm on the test space implies (see [20, Proposition 2.1])

$$\|\mathfrak{u}\|_{\mathscr{U}}=\|\mathfrak{u}\|_{E},$$

which, in other words, says that if we use the ideal DPG methodology with the optimal test norm, then we can minimize the solution error in any trial norm $\|\cdot\|_{\mathscr{U}}$ we choose.

However, in practical implementations of the method, we encounter some issues that place limitations on that goal. In order to address those limitations, we need to define what we understand by robustness in the present work, and next we focus on the model problem to be later studied numerically.

1.3 Robustness

In the case of singular perturbation problems, we consider a discretization method to be *robust* if the stability constant C relating the actual approximation error and the best approximation error is independent of the perturbation parameter (ϵ):

$$\|\mathfrak{u} - \mathfrak{u}_h\|_{\mathscr{U}^{(1)}} \le C \inf_{\mathfrak{w}_h \in \mathscr{U}^h} \|\mathfrak{u} - \mathfrak{w}_h\|_{\mathscr{U}^{(2)}},$$

with norms $\|\cdot\|_{\mathscr{U}^{(1)}}$ and $\|\cdot\|_{\mathscr{U}^{(2)}}$ being ideally the same [11]. For this $(\|\cdot\|_{\mathscr{U}^{(1)}} = \|\cdot\|_{\mathscr{U}^{(2)}} = \|\cdot\|_{\mathscr{U}})$ it must hold that the constants in (1.7) (that is, the bounding constants of b and \mathbf{F}_r) are all independent of ϵ .

Here lies the challenge of singular perturbation problems. It is desired to be capable of varying the value of ϵ , as in real applications this number ranges several orders of magnitude, usually in much smaller scales than the rest of the data involved. Thus, it is important to show independence of ϵ in the constants, in order to have a method that suits a wide range of values of this perturbation parameter. Coming up with a method that shows this independence is not an easy task, and although DPG is equipped with good tools to approach the problem, there are some complications in the way that must be carefully handled in the process.

2 Choice of the Norm

With the purpose of illustrating the challenges present in the solution of singular perturbation problems through DPG, we will describe a model problem and discuss its *ultraweak variational formulation*, the functional setting, and explain the factors that intervene in the choice of the test norm, concerning both mathematical and computational aspects.

2.1 Model Problem

For the sake of simplicity, we limit ourselves to the two-dimensional space. We will work with an important singular perturbation model problem, the steady-state convection-dominated diffusion, briefly referred to as "confusion" problem. Its strong form is stated as follows: find $u: \Omega \to \mathbb{R}$ such that

$$\begin{cases} -\epsilon \Delta u + \operatorname{div}(\beta u) = f & \text{in } \Omega, \\ u = u_0 & \text{on } \Gamma, \end{cases}$$

where $\Omega \subset \mathbb{R}^2$ is a simply connected open set (a domain) with piecewise smooth boundary Γ , $\epsilon > 0$ is the diffusivity or perturbation parameter in this case, β is a divergence-free advection vector field (div $\beta = 0$) of magnitude $|\beta| = \mathcal{O}(1)$, $f \in L^2(\Omega)$ and $u_0 \in H^{\frac{1}{2}}(\Gamma)$. Rewriting the second order partial differential equation as a system of first order equations by introducing $\sigma := \epsilon \nabla u$, we obtain

$$\begin{cases}
e^{-1}\sigma - \nabla u = 0 & \text{in } \Omega, \\
-\operatorname{div}(\sigma - \beta u) = f & \text{in } \Omega, \\
u = u_0 & \text{on } \Gamma.
\end{cases}$$
(2.1)

From (2.1) we can identify the differential operator \mathcal{A} acting on group unknown (σ , u):

$$\mathcal{A} := \begin{pmatrix} \epsilon^{-1} & -\nabla \\ -\operatorname{div} & \beta \cdot \nabla \end{pmatrix}.$$

2.2 Ultraweak Variational Formulation

In order to solve (2.1) weakly, we can relax both of the equations in the system so that the required regularity of the solution is minimal. Let us introduce a vector-valued test function τ for the first line, and a scalar-valued test function v for the second one. In the process of relaxing the second one, a term involving the normal component of $\sigma - \beta u$ arises. By setting v = 0 on the boundary, such a term vanishes. Thus, the ultraweak variational formulation is the one brought up by defining the following bilinear and linear functionals on $\mathfrak{u} = \begin{pmatrix} \sigma \\ u \end{pmatrix}$, and $\mathfrak{v} = \begin{pmatrix} \tau \\ v \end{pmatrix}$:

$$b(\mathfrak{u},\mathfrak{v}) := (\mathfrak{u}, \mathcal{A}^*\mathfrak{v})_{\Omega}, \tag{2.2}$$

$$\ell(\mathfrak{v}) := \langle \tau \cdot n, u_0 \rangle_{\Gamma} + (f, v)_{\Omega}, \tag{2.3}$$

where

$$\mathcal{A}^*\mathfrak{v} = \begin{pmatrix} \epsilon^{-1} & \nabla \\ \operatorname{div} & -\beta \cdot \nabla \end{pmatrix} \begin{pmatrix} \tau \\ v \end{pmatrix} = \begin{pmatrix} \epsilon^{-1}\tau + \nabla v \\ \operatorname{div}\tau - \beta \cdot \nabla v \end{pmatrix},$$

the pairing $(\cdot,\cdot)_{\Omega}$ is the $L^2(\Omega)$ inner product (which generates norm $\|\cdot\|_{\Omega}$), and $\langle\cdot,\cdot\rangle_{\Gamma}$ denotes the duality pairing of boundary energy spaces $H^{-\frac{1}{2}}(\Gamma) \times H^{-\frac{1}{2}}(\Gamma)$. Having reduced the regularity in the trial variables, for (2.2) to make sense we do require some regularity in the test functions, namely, $\tau \in H(\text{div}, \Omega)$ and $v \in H^1(\Omega)$ with v = 0 on Γ (equivalently, $v \in H^1_0(\Omega)$). Notice that because the normal trace of τ , i.e. $(\tau \cdot n)|_{\Gamma}$, lives in Sobolev space $H^{-\frac{1}{2}}(\Gamma)$, the first term in the linear functional (2.3) is well defined.

Notice that in this formulation u and σ come from an L^2 space, which is a very favorable situation in the "confusion" problem, because the large gradients (caused by the steep boundary layers present in the solutions to this equation) will not influence the measure of the error in the chosen L^2 norm [11].

Additionally, notice that for this formulation the optimal test norm is simply

$$\|\mathfrak{v}\|_{\mathscr{V},\text{opt}} = \|\mathcal{A}^*\mathfrak{v}\|_{\mathscr{U}} = \|\mathcal{A}^*\mathfrak{v}\|_{\Omega}.$$

Because of this identity, we also call this norm the *adjoint-operator norm*.

An alternative to the adjoint-operator norm is the adjoint-graph norm or quasi-optimal norm:

$$\|\mathfrak{v}\|_{\mathscr{V},\text{qopt}}^{2} := \|\mathcal{A}^{*}\mathfrak{v}\|_{\Omega}^{2} + \eta(\|\tau\|_{\Omega}^{2} + \|\nu\|_{\Omega}^{2}), \tag{2.4}$$

where η is a scaling coefficient. Assume that operator A^* is bounded below, i.e.²

$$\|\mathcal{A}^* \mathfrak{v}\|_{\Omega}^2 \ge \alpha \|\mathfrak{v}\|_{\Omega}^2$$
 for all $\mathfrak{v} = (\tau, \nu) \in H(\operatorname{div}, \Omega) \times H_0^1(\Omega)$.

We have trivially

$$\|\mathfrak{v}\|_{\mathscr{V},\text{opt}} \leq \|\mathfrak{v}\|_{\mathscr{V},\text{qopt}},$$

and

$$\|\mathfrak{v}\|_{\mathscr{V}, \text{opt}}^2 \leq \|\mathcal{A}^*\mathfrak{v}\|_{\Omega}^2 + \frac{\eta}{\alpha}\|\mathcal{A}^*\mathfrak{v}\|^2 = \left(1 + \frac{\eta}{\alpha}\right)\|\mathcal{A}^*\mathfrak{v}\|_{\Omega}^2.$$

With $\frac{\eta}{\alpha} = \mathcal{O}(1)$, the optimal norm and the adjoint-graph norm are *robustly equivalent* and so are the corresponding energy norms. The ideal DPG method with the adjoint-graph test norm no longer delivers the L^2 projection, but the method is robust in the L^2 norm.

2.3 Broken Test Spaces

Let Ω_h be a non-overlapping partition of Ω into open elements with Lipschitz boundary, so that

$$\bar{\Omega} = \bigcup \{\bar{\mathcal{K}} : \mathcal{K} \in \Omega_h\},\$$

and $\Gamma_h = \bigcup \{\partial \mathcal{K} : \mathcal{K} \in \Omega_h\}$ denotes the mesh skeleton. Setting up a variational formulation with *broken* test spaces is a two step process. In the first step, boundary conditions imposed on the test space are removed, giving as a result new boundary unknowns. In the second step we proceed to actually break the test functions, replacing the usual energy spaces defined on Ω with spaces defined elementwise as follows (for details on this process see [9]):

$$H^{1}(\Omega_{h}) := \{ v \in L^{2}(\Omega) : v|_{\mathcal{K}} \in H^{1}(\mathcal{K}), \ \mathcal{K} \in \Omega_{h} \},$$
$$H(\operatorname{div}, \Omega_{h}) := \{ \tau \in L^{2}(\Omega) : \tau|_{\mathcal{K}} \in H(\operatorname{div}, \mathcal{K}), \ \mathcal{K} \in \Omega_{h} \}.$$

The adoption of broken test spaces is what adds the discontinuous nature to DPG. It is easy to see that the broken spaces contain the classical energy spaces: $H^1(\Omega) \subset H^1(\Omega_h)$, $H(\text{div}, \Omega) \subset H(\text{div}, \Omega_h)$. From (2.1), now multiplying each line by a vector-valued broken test function τ and a scalar-valued broken test function ν and integrating by parts we obtain the broken ultraweak variational formulation. In this new formulation, additional unknowns are included to account for reproducing the problem when only testing with functions from the classical test spaces:

- (1) trace $\hat{u} \in H^{\frac{1}{2}}(\Gamma_h)$ (satisfying the boundary condition $\hat{u} = 0$ on Γ), which represents the skeleton values of
- (2) flux $\hat{\sigma}_n \in H^{-\frac{1}{2}}(\Gamma_h)$ which represents the normal trace of net flux $\beta u \sigma$ across the mesh skeleton.

² By the Closed Range Theorem for closed operators [17, Remark 5.19.1] the operator \mathcal{A} is also bounded below with the same constant α .

The bilinear form and linear form of this variational formulation are

$$b((\mathfrak{u},\hat{\mathfrak{u}}),\mathfrak{v}) = (\mathfrak{u},\mathcal{A}^*\mathfrak{v})_{\Omega_h} + \langle \hat{\sigma}_n, v \rangle_{\Gamma_h} - \langle \tau \cdot n, \hat{\mathfrak{u}} \rangle_{\Gamma_h},$$

$$\ell(\mathfrak{v}) = \langle \tau \cdot n, \hat{u}_0 \rangle_{\Gamma_h} + \langle v, f \rangle_{\Omega_h},$$

where $v \in \mathcal{V} = \mathbf{H}(\operatorname{div}, \Omega_h) \times H^1(\Omega_h)$ and $(u, \hat{u}) \in \mathcal{U} = \mathbf{L}^2(\Omega) \times L^2(\Omega) \times H^{-\frac{1}{2}}(\Gamma_h) \times H^{\frac{1}{2}}(\Gamma_h)$ are group variables, $v = (\tau, v)$, $u = (\sigma, u)$ and $\hat{u} = (\hat{\sigma}_n, \hat{u})$. Moreover, $\hat{u}_0 \in H^{\frac{1}{2}}(\Gamma_h)$ is a lift into the interior skeleton of the boundary values u_0 . Finally, we are using the pairings on the mesh and the skeleton defined by

$$\begin{split} (\,\cdot\,,\,\cdot\,)_{\Omega_h} &:= \sum_{\mathcal{K} \in \Omega_h} (\,\cdot\,,\,\cdot\,)_{\mathcal{K}} \quad \text{(this one induces norm } \|\,\cdot\,\|_{\Omega_h}), \\ \langle\,\cdot\,,\,\cdot\,\rangle_{\Gamma_h} &:= \sum_{\mathcal{K} \in \Omega_h} \langle\,\cdot\,,\,\cdot\,\rangle_{\partial\mathcal{K}}. \end{split}$$

Now we can see how the optimal test norm for this problem looks like. If our norm on trial space $\mathcal U$ is

$$\|(\mathfrak{u},\hat{\mathfrak{u}})\|_{\mathcal{U}}^2 := \|\sigma\|_{\Omega}^2 + \|u\|_{\Omega}^2 + \|\hat{\sigma}_n\|_{H^{-\frac{1}{2}}(\Gamma_h)}^2 + \|\hat{u}\|_{H^{\frac{1}{2}}(\Gamma_h)}^2,$$

then, according to [16] the optimal test norm is

$$\|\mathfrak{v}\|_{\mathscr{V},\text{opt}}^{2} = \|\mathcal{A}^{*}\mathfrak{v}\|_{\Omega_{h}}^{2} + \|(\tau \cdot n)|_{\Gamma_{h}}\|_{(H^{\frac{1}{2}}(\Gamma_{h}))'}^{2} + \|\nu|_{\Gamma_{h}}\|_{(H^{-\frac{1}{2}}(\Gamma_{h}))'}^{2}. \tag{2.5}$$

Finally, in order to discretize this broken variational formulation, we need discrete subspaces not only for the field variables in L^2 but for the trace and flux on the mesh skeleton. Then we need to choose finite-dimensional subspaces $\mathbf{Y}^p \in \mathbf{L}^2(\Omega)$, $\hat{Y}^p \in H^{-\frac{1}{2}}(\Gamma_h)$ and $\hat{W}^p \in H^{\frac{1}{2}}(\Gamma_h)$ to form the trial discrete subspace \mathcal{U}^h .

2.4 Localization of the Test Norm

For a simpler test norm, we find breaking the test spaces computationally very useful, because matrix G becomes block diagonal, with each block corresponding to an element of the mesh. Then the "inversion" of G can be performed elementwise, and thus we also can compute an element contribution for the DPG stiffness matrix $B^TG^{-1}B$, which can be assembled globally in the same fashion as in any Galerkin finite element code. This is not the case with norm (2.5), because the skeleton terms involve jumps in the functions across edges, therefore the computation of the norm is no longer fully local.

Instead of attempting to derive an optimal test norm corresponding to the broken variational formulation, we can opt for using the quasi-optimal adjoint-graph norm corresponding to the original formulation (2.4). Due to the presence of the L^2 term, these adjoint-graph norm extends to the broken test space (then it is *localizable*, contrary to norm (2.5)). The fundamental result in [3] shows that the broken variational formulation remains stable with the stability constant of the same order as α .

2.5 Discrete Stability with the Quasi-Optimal Norm

In summary, with the localizable adjoint-graph norm and broken test spaces, we end up with the following estimate for the problem at hand:

$$\begin{split} \|\sigma - \sigma_h\|_{\Omega}^2 + \|u - u_h\|_{\Omega}^2 + \|\hat{\sigma}_n - \hat{\sigma}_{n,h}\|_{\text{flux}}^2 + \|\hat{u} - \hat{u}_h\|_{\text{trace}}^2 \\ & \leq C \bigg\{ \inf_{\varsigma_h \in Y^p} \|\sigma - \varsigma_h\|_{\Omega}^2 + \inf_{u_h \in Y^p} \|u - w_h\|_{\Omega}^2 + \inf_{\hat{\varsigma}_{n,h} \in \hat{V}^p} \|\hat{\sigma}_n - \hat{\varsigma}_{n,h}\|_{\text{flux}}^2 + \inf_{\hat{w}_h \in \hat{W}^p} \|\hat{u} - \hat{w}_h\|_{\text{trace}}^2 \bigg\}, \end{split}$$

where $\|\cdot\|_{\text{flux}}$ and $\|\cdot\|_{\text{trace}}$ are special norms for fluxes and traces implied by the quasi-optimal test norm, stability constant C is of order 1 and independent of ϵ , and the term inside the brackets represents the best approximation error of \mathfrak{u} in space \mathcal{U}^h . The good news is that we control fields u, σ in the desired L^2 norm

in a robust way. The bad news is that, in the process of breaking test functions, we have introduced new unknowns which must be measured in a norm implied by our quasi-optimal test norm, which we have to accept. For a longer discussion on the subject, see [3].

2.6 Quasi-Optimal Test Norm vs Robust Test Norm

The optimal test functions can be seen as the solutions to the dual problem $\mathcal{A}^*\mathfrak{v} = \mathfrak{u}$ with homogeneous boundary conditions [8], then it is no surprise that the optimal test functions develop boundary layers and their resolution is difficult. There have been multiple developments concerning the design of norms that produce test functions which are easier to approximate. Demkowicz and Heuer [11] present the analysis of robustly designed norms for the "confusion" problem, which involve mesh dependent coefficients and weighted L^2 norms for some terms (such weights are data dependent). Later, Chan, Heuer, Bui-Thanh and Demkowicz [4] showed that by setting appropriate boundary conditions the use of weights is unnecessary, resulting in the following robust test norm (specific to the "confusion" problem):

$$\|v\|_{\mathcal{V},D}^{2} := \|\operatorname{div} \tau\|_{\Omega_{h}}^{2} + \varepsilon \|\nabla v\|_{\Omega_{h}}^{2} + \|\beta \cdot \nabla v\|_{\Omega_{h}}^{2} + \|C_{\tau}\tau\|_{\Omega_{h}}^{2} + \|C_{v}v\|_{\Omega_{h}}^{2}, \tag{2.6}$$

$$C_{\nu}|_{\mathcal{K}} := \min\left\{\sqrt{\frac{\epsilon}{|\mathcal{K}|}}, 1\right\},$$
 (2.7)

$$C_{\tau}|_{\mathcal{K}} := \min\left\{\sqrt{\frac{1}{\epsilon}}, \sqrt{\frac{1}{|\mathcal{K}|}}\right\} \quad \text{for all } \mathcal{K} \in \Omega_h,$$
 (2.8)

where $|\mathcal{K}|$ is the area of element \mathcal{K} . In Section 4, norm (2.6) will be commonly referred to as *the robust* test norm. The robust test norm separates ν and τ so the local Gram matrix becomes block-diagonal. The mesh dependent factors eliminate dominance of diffusion by reaction in (2.6) which results in optimal test functions with "weak" boundary layers that can be easily resolved.

Although these norms have robust features, having to design a norm for each specific boundary value problem is less desirable than using the optimal (or quasi-optimal) norm; which is a general concept that can be applied on any problem given in its ultraweak variational formulation. However, we can try a simpler compromise approach.

Due to the theoretical difficulty and the lack of generality that these designed norms represent, and despite their virtues, we wish to keep trying the more general adjoint-graph norm but looking for another strategy to ease the resolution of the optimal test functions. The strategy of our choice is to implement boundary-layer-adapted test spaces, as it is explained in detail in Section 3. We will later compare the numerical performance of the distinct norms introduced above and draw some conclusions from the results.

2.7 Testing New Norms and Strategies

Due to the difficulty to solve problems with $\epsilon < 10^{-4}$ we explored additional strategies.

The first strategy is to define a modified test norm. With a big simplification of the stability analysis provided in [4, 11], we adopt the mesh-dependent coefficient in the quasi-optimal norm, and replace the small perturbation parameter ϵ with a value depending on the element size h. For each element, define $\epsilon^* := \max\{ch, \epsilon\}$, with c being a positive constant (in our examples set to $c = 10^{-2}$). Thus, our modified adjoint-graph norm (referred to as the EPS STAR norm in the plots for the results) is defined as

$$\|(\tau, \nu)\|_{\mathscr{V}, \text{eps-star}}^2 := \left\| \frac{1}{\epsilon^*} \tau + \nabla \nu \right\|_{\Omega_h}^2 + \|\text{div } \tau - \beta \cdot \nabla \nu\|_{\Omega_h}^2 + \|\nu\|_{\Omega_h}^2,$$

where we have expanded (2.4), with $\eta = 1$ (although removing the extra $\|\tau\|$ term), and incorporated the new coefficient ϵ^* .

Another proposed strategy which we briefly explore numerically could be interpreted as a continuation technique with respect to parameter ϵ . This strategy is understood in the context of adaptive refinements

$$\epsilon_i = \max \left\{ \frac{1}{2} (c\rho_{i-1} + \epsilon_{i-1}), \epsilon_{\text{orig}} \right\},$$

where ϵ_i is the perturbation value used for refinement i (with $i=1,2,\ldots$), $\rho_{i-1}=\|\mathcal{B}\mathfrak{u}_{i-1}^h-\ell\|_{\mathscr{V}'}$ is the residual obtained after solving the previous refinement step, c is a positive constant and we set $\rho_0=0$ and $\epsilon_0=\epsilon_{\mathrm{orig}}$.

3 Test Space Discretization

We want to choose appropriate finite-dimensional subspaces $\mathcal{U}^h \subset \mathcal{U}$ and $\mathcal{V}^r \subset \mathcal{V}$ for implementing the DPG methodology. Though we could generalize this exercise to triangles, for the purpose of the current study we limit ourselves to working with quadrilateral elements only. As explained in the previous section, the most challenging part of applying DPG to the "confusion" problem is to accurately resolve the optimal test functions. Then, we decide to discretize the trial space with classical polynomial spaces, but for the test space the idea is to use specially tailored functions, that may account for the eventual boundary or internal layers generated by the convection-dominated physics of the problem.

We will employ the first exact sequence of polynomial spaces for the Nédélec quadrilateral element, and for that purpose the following definitions are required. Let $\mathfrak{I}\subset\mathbb{R}$ be the unit open interval (0,1). Thus $\widetilde{\mathfrak{K}}:=\mathfrak{I}^2$ represents the unit square, which is the master element for every element in our partition. We assume standard shape regularity assumptions avoiding shape degenerate elements. Consequently, for each element $\mathfrak{K}\in\Omega_h$ there is a diffeomorphic element map $\mathbf{x}_{\mathfrak{K}}:\widetilde{\mathfrak{K}}\to\bar{\mathfrak{K}}$ with nonsingular jacobian $\mathfrak{J}_{\mathfrak{K}}$. For all energy spaces of interest defined on \mathfrak{K} , there are well-known Piola maps that relate them to spaces defined over $\widetilde{\mathfrak{K}}$ (see [12, 18]):

$$\begin{split} H^1(\widetilde{\mathcal{K}})\ni \widetilde{\boldsymbol{\nu}} &\mapsto T_{\mathcal{K}}^{\mathrm{grad}} \widetilde{\boldsymbol{\nu}} := \widetilde{\boldsymbol{\nu}} \circ \mathbf{x}_{\mathcal{K}}^{-1} = \boldsymbol{\nu} \in H^1(\mathcal{K}), \\ H(\mathrm{div},\widetilde{\mathcal{K}})\ni \widetilde{\boldsymbol{\tau}} &\mapsto T_{\mathcal{K}}^{\mathrm{div}} \widetilde{\boldsymbol{\tau}} := (\det \mathcal{J}_{\mathcal{K}}^{-1} \mathcal{J}_{\mathcal{K}} \widetilde{\boldsymbol{\tau}}) \circ \mathbf{x}_{\mathcal{K}}^{-1} = \boldsymbol{\tau} \in H(\mathrm{div},\mathcal{K}), \\ L^2(\widetilde{\mathcal{K}})\ni \widetilde{\boldsymbol{u}} &\mapsto T_{\mathcal{K}} \widetilde{\boldsymbol{u}} := (\det \mathcal{J}_{\mathcal{K}}^{-1} \widetilde{\boldsymbol{u}}) \circ \mathbf{x}_{\mathcal{K}}^{-1} = \boldsymbol{u} \in L^2(\mathcal{K}), \\ L^2(\widetilde{\mathcal{K}})\ni \widetilde{\boldsymbol{\sigma}} &\mapsto T_{\mathcal{K}} \widetilde{\boldsymbol{\sigma}} := (\det \mathcal{J}_{\mathcal{K}}^{-1} \widetilde{\boldsymbol{\sigma}}) \circ \mathbf{x}_{\mathcal{K}}^{-1} = \boldsymbol{\sigma} \in L^2(\mathcal{K}). \end{split}$$

The conformity wanted in the subspaces makes possible to derive similar maps for the trace spaces, where we can exploit the fact that $H^{\frac{1}{2}}(\Gamma_h)$ is formed by traces of $H^1(\Omega)$ and $H^{-\frac{1}{2}}(\Gamma_h)$ contains the normal traces of $H(\operatorname{div},\Omega)$. Clearly, Γ_h is the union of all the edges that exist in the mesh. One can show that pullbacks of traces on an edge depend only on the restriction of element maps to the edge and therefore, they are well defined, i.e. independent of which element map is being used. The inverse image of e through $\mathbf{x}_{\mathcal{K}_e}$ is denoted \tilde{e} , with unit tangent $\mathbf{t}_{\tilde{e}}$. Hence, the Piola maps for the trace spaces correspond edgewise to

$$\begin{split} H^{\frac{1}{2}}(\Gamma_h)\big|_{\widetilde{e}} \ni \widetilde{u} &\mapsto T_e^{\mathrm{tr,grad}}\widetilde{u} := \widetilde{u} \circ \mathbf{x}_{\mathcal{K}_e}^{-1} = v \in H^{\frac{1}{2}}(\Gamma_h)\big|_e, \\ H^{-\frac{1}{2}}(\Gamma_h)\big|_{\widetilde{e}} \ni \widetilde{\sigma}_n &\mapsto T_e^{\mathrm{tr,div}}\widetilde{\sigma}_n := (|\mathcal{J}_{\mathcal{K}_e}\mathbf{t}_{\widetilde{e}}|^{-1}\widetilde{\sigma}_n) \circ \mathbf{x}_{\mathcal{K}_e}^{-1} = \sigma_n \in H^{-\frac{1}{2}}(\Gamma_h)\big|_e. \end{split}$$

These Piola maps are applied in the definition of the polynomial subspaces that will be used in the DPG implementation. For any integers q_1 , $q_2 \ge 0$, and $\mathbb{P}^{q_1}(\mathbb{I})$ denoting the space of univariate polynomials defined on \mathbb{I} of degree up to q_1 , we define the tensor product polynomial space

$$\mathfrak{Q}^{q_1,q_2}(\widetilde{\mathfrak{K}}):=\mathfrak{P}^{q_1}(\mathfrak{I})\otimes \mathfrak{P}^{q_2}(\mathfrak{I}).$$

With these definitions, for some integer $p \ge 1$ our discrete trial space for the broken ultraweak formulation is chosen as follows:

$$\mathscr{U}^h := \mathbf{Y}^p \times \mathbf{Y}^p \times \hat{W}^p \times \hat{V}^p \subset \mathbf{L}^2(\Omega) \times L^2(\Omega) \times H^{\frac{1}{2}}(\Gamma_h) \times H^{-\frac{1}{2}}(\Gamma_h) = \mathscr{U},$$

where

$$\begin{split} \boldsymbol{Y}^p &:= \{ \boldsymbol{\sigma} \in \boldsymbol{L}^2(\Omega) : \boldsymbol{\sigma}|_{\mathcal{K}} \in \boldsymbol{T}_{\mathcal{K}}(\mathbb{Q}^{p-1,p-1}(\widetilde{\mathcal{K}}))^2 \text{ for all } \mathcal{K} \in \Omega_h \}, \\ \boldsymbol{Y}^p &:= \{ \boldsymbol{u} \in L^2(\Omega) : \boldsymbol{u}|_{\mathcal{K}} \in T_{\mathcal{K}}\mathbb{Q}^{p-1,p-1}(\widetilde{\mathcal{K}}) \text{ for all } \mathcal{K} \in \Omega_h \}, \\ \hat{W}^p &:= \{ \hat{\boldsymbol{u}} \in C(\partial \Omega^h) : \hat{\boldsymbol{u}}|_e \in T_e^{\mathrm{tr,grad}} \mathcal{P}^p(\widetilde{\boldsymbol{e}}) \text{ for all edges } \boldsymbol{e} \in \partial \Omega^h \}, \\ \hat{V}^p &:= \{ \hat{\boldsymbol{\sigma}}_n \in L^2(\partial \Omega^h) : \hat{\boldsymbol{\sigma}}_n|_e \in T_e^{\mathrm{tr,div}} \mathcal{P}^{p-1}(\widetilde{\boldsymbol{e}}) \text{ for all edges } \boldsymbol{e} \in \partial \Omega^h \}. \end{split}$$

The shape functions used for these spaces are Legendre and integrated-Legendre (Lobatto) polynomials (for the edges), and tensor products of those (for the quadrilaterals), as exposed in [13].

As explained above, when implementing DPG it is required to have an enriched test subspace \mathcal{V}^r . Its dimension (N_r) should be greater than or equal to the dimension of the discretized trial space (N_h) ; we call obtaining \mathcal{V}^{r} , enrichment. The most common enrichment strategy is *p-enrichment*, which entails raising the polynomial degree to $p_r = p + \Delta p$, with $\Delta p \ge 0$. Should us want to adopt such a strategy, our discrete test space would be

$$\mathcal{V}^r_L := V^{p_r}_L \times W^{p_r}_L \subset H(\mathrm{div},\Omega^h) \times H^1(\Omega^h) = \mathcal{V},$$

where

$$\begin{split} V_L^{p_r} &:= \big\{ \tau \in H(\mathrm{div}, \Omega^h) : \tau|_{\mathcal{K}} \in T_{\mathcal{K}}^{\mathrm{div}}(\mathbb{Q}^{p_r, p_r - 1}(\widetilde{\mathcal{K}}) \times \mathbb{Q}^{p_r - 1, p_r}(\widetilde{\mathcal{K}})) \text{ for all } \mathcal{K} \in \Omega^h \big\}, \\ W_L^{p_r} &:= \big\{ v \in H^1(\Omega^h) : v|_{\mathcal{K}} \in T_{\mathcal{K}}^{\mathrm{grad}} \mathbb{Q}^{p_r, p_r}(\widetilde{\mathcal{K}}) \text{ for all } \mathcal{K} \in \Omega^h \big\}. \end{split}$$

In the just defined spaces, the subscript L indicates that they are constructed using Legendre and Lobatto polynomials. However, these test spaces are not so well suited for the "confusion" problem, as they do not incorporate the perturbation parameter by any means, hence they hardly perceive the degenerate boundary layers generated unless the element size is similar in magnitude to the parameter.

Alternatively, h- and hp-enrichment strategies have been studied recently, where the test space size is increased by generating a submesh within each element and defining a discrete conforming space on that submesh. Broersen, Dahmen and Stevenson [2] have rigorously proven stability of the DPG method for transport equations (convection-reaction) using an hp-enrichment strategy. In their work they prove that under a bounded refinement level of the element subgrids, and with fixed $\Delta p = 1$, there exists a discrete inf-sup constant that makes the practical DPG method stable for this problem. Bulding over this work, in [6] Dahmen and Stevenson show a-posteriori error estimators and adaptive strategies that guarantee a fixed error reduction rate for transport equations (fully proven for 1d, and partially for multiple dimensions).

Next, we are proposing alternative spaces that in some way account for the perturbation parameter, aiming to get a higher solution quality when resolving the optimal test functions for the "confusion" problem.

3.1 Design of Enriched Test Functions

Shishkin [19] introduced the idea of a piecewise-uniform mesh that is constructed a priori based on the singular perturbation parameter. This strategy has been widely adopted and used along with multiple methods, to the point where this meshes are now called Shishkin meshes. Aiming for an hp-enrichment strategy more specifically designed for problems with boundary layers, and given existent anecdotal evidence of its utility with other numerical methods (see, for instance, [14] and [15]), we propose to enrich the test space with B-splines defined over a Shishkin submesh.

3.1.1 Shishkin Mesh

The application of Shishkin meshes for the implementation of singularly perturbed problems with DPG was first made in [16]. In that work, each quadrilateral element was partitioned into a 3×3 grid, giving a special width to the outermost subelements, as shown in Figure 1. The resulting test functions are especially favorable for capturing boundary layers in hp-finite element methods, therefore it was a reasonable heuristic choice to adopt the idea for the local problem of solving DPG's optimal test functions.

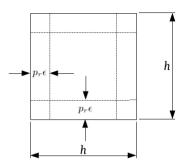


Figure 1: Shishkin subgrid in each element (showing physical dimensions).

The reference mentioned above [16] used a locally conforming space of Bernstein polynomials, enforcing C^0 continuity across subelements of the Shishkin mesh. We are trying a slight variation of this approach, which will help reducing local cost and will allow us to assess whether higher-continuity local spaces can be of help for better resolving the optimal DPG test functions.

3.1.2 B-Splines

B-splines are piecewise polynomial functions defined over an interval [a, b], that possess several properties that have made them a successful tool both in numerical analysis and in computer graphics [5]. In order to define a set of B-splines that may be used as shape functions, we are required to set an integer order $m \ge 0$, another integer $n \ge m+1$ that corresponds to the number of B-splines, and a set of parameters referred to as the knot vector $\Xi = \{\xi_1, \ldots, \xi_{n+m+1}\}$, where $a = \xi_1 = \cdots = \xi_{m+1} < \xi_{m+2} \le \cdots \le \xi_n < \xi_{n+1} = \cdots = \xi_{n+m+1} = b$ are real numbers. Each different value in Ξ is called a knot (we order them increasingly and denote them ζ_l , for $l = 0, \ldots, N$), and the number of times that the same value is present in the vector is called multiplicity (denoted M_l , for $l = 0, \ldots, N$). Using this knot vector, we define the i - th B-spline of order m, $B_{m,i}$, as follows:

$$B_{0,i}(\xi) = \begin{cases} 1 & \text{if } \xi_i \le xi < \xi_{i+1}, \\ 0 & \text{otherwise,} \end{cases} & \text{for } m = 0,$$

$$B_{m,i}(\xi) = \frac{\xi - \xi_i}{\xi_{i+m} - \xi_i} B_{m-1,i}(\xi) + \frac{\xi_{i+m+1} - \xi}{\xi_{i+m+1} - \xi_{i+1}} B_{m-1,i+1} & \text{for } m \ge 1,$$

for $i=1,2,\ldots,n$. The formula above is known as the Cox-de Boor recursion formula [5]. Additionally, it is known that continuity of B-splines across knots (that is, at $\xi = \zeta_l$) is of order $\alpha_l = m - M_l$, $l = 0,\ldots,N$. Let $\alpha = \{\alpha_0,\ldots,\alpha_N\}$ be the regularity vector and define the B-spline space $\boldsymbol{B}_{\alpha}^m([a,b]) := \operatorname{span}\{B_{m,i}\}_{i=1}^n$. Let [a,b] = [0,1], so we can simplify the notation: $\boldsymbol{B}_{\alpha}^m = \boldsymbol{B}_{\alpha}^m([0,1])$.

Buffa, Rivas, Sangalli and Vázquez [1] have introduced exact sequence B-spline spaces for tensor product elements in two dimensions. The logic of such spaces follows the same ideas as for tensor product polynomial spaces. In this case, the two-dimensional tensor product B-spline space on the master element is defined as

$$\mathcal{S}_{\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2}^{m_1,m_2} := \boldsymbol{B}_{\boldsymbol{\alpha}_1}^{m_1} \otimes \boldsymbol{B}_{\boldsymbol{\alpha}_2}^{m_2}.$$

3.1.3 Specifications of the Enriched Test Space

In order to define a tensor product B-spline space based on the Shishkin mesh presented in Figure 1, we have the following data:

$$N = N_1 = N_2 = 3$$
,
 $\zeta_0 = 0$, $\zeta_1 = \min\{0.25, \epsilon p_r h^{-1}\}$, $\zeta_2 = 1 - \min\{0.25, \epsilon p_r h^{-1}\}$, $\zeta_3 = 1$,
 $\alpha = \alpha_1 = \alpha_2 = \{-1, p_r - 1, p_r - 1, -1\}$, $\alpha - 1 = \{-1, p_r - 2, p_r - 2, -1\}$.

With this data and the definitions above, we can reconstruct the corresponding knot vectors and hence the alternative enriched spaces

$$\mathcal{V}_{R}^{r} := V_{R}^{p_{r}} \times W_{R}^{p_{r}} \subset H(\operatorname{div}, \Omega^{h}) \times H^{1}(\Omega^{h}) = \mathcal{V},$$

where

$$\begin{split} V_B^{p_r} &:= \big\{ \tau \in H(\mathrm{div}, \Omega^h) : \tau|_{\mathcal{K}} \in T_{\mathcal{K}}^{\mathrm{div}}(\mathcal{S}_{\boldsymbol{\alpha}, \boldsymbol{\alpha} - 1}^{p_r, p_r - 1} \times \mathcal{S}_{\boldsymbol{\alpha} - 1, \boldsymbol{\alpha}}^{p_r - 1, p_r}) \text{ for all } \mathcal{K} \in \Omega^h \big\}, \\ W_B^{p_r} &:= \big\{ v \in H^1(\Omega^h) : v|_{\mathcal{K}} \in T_{\mathcal{K}}^{\mathrm{grad}} \mathcal{S}_{\boldsymbol{\alpha}, \boldsymbol{\alpha}}^{p_r, p_r} \text{ for all } \mathcal{K} \in \Omega^h \big\}. \end{split}$$

In the subspaces above, the subscript *B* is for B-splines. Unlike the choice found in [16], we have a higher continuity of the shape functions across knots and a smaller space, which reduces the computational complexity at the element level. If we used C^0 regularity at the knots, the dimension of \mathcal{V}^r restricted to one element would be $2(3p_r + 1)(3p_r - 2) + (3p_r + 1)^2 = 3(3p_r + 1)^2 - 6(3p_r + 1)$. In the current work we propose an enriched space which is piecewise of the same polynomial degree as the ones in the cited reference, but with a local dimension of dim $\mathcal{V}_{R}^{r}|_{\mathcal{K}} = 2(p_r + 3)(p_r + 2) + (p_r + 3)^2 = 3(p_r + 3)^2 - 2(p_r + 3)$, which is smaller than the one above whenever $p_r > 1$. On the other hand, if we see the dimension of the polynomial counterpart, we have dim $\mathcal{V}_L^r|_{\mathcal{K}} = 3(p_r+1)^2 - 2(p_r+1)$. Even though the main focus is not to analyze the computational cost of this implementation, the fact that the spaces herein proposed are of a dimension much lower than with other Shishkin-mesh-based enriched space is certainly an appealing feature. To illustrate this aspect, we will later show results on computation time.

4 Numerical Results

We present numerical results to two problems, with which we compare the performance of discrete test spaces based on Legendre and Lobatto polynomials (hereinafter referred to as "Lobatto" only) with B-splines.

For the implementation of the present method we used the Cox-de Boor formula for evaluation of B-splines, and for numerical integration we used Gaussian quadrature over each sub-element of the Shishkin mesh. Our test functions were mounted on top of the existing 2Dhp code infrastructure originally developed by Demkowicz [7]. This high order hp-finite element code was previously expanded to include DPG capabilities.

Making use of the error estimator built into the DPG methodology at use [10], we use the error convergence of adaptive h-refinements as comparison criterion. We show numerical convergence results in the L^2 norm for u and σ .

For both problems, the domain is the unit square. The first one (Eriksson–Johnson) has constant advection vector and the second one (herein referred to as curved streamlines) variable advection vector. These problems have boundary conditions more complicated than the one of the simplified presentation above, and this fact may have important theoretical implications, but that does not interfere with the implementation of the test norms and spaces herein developed. For a deep analysis on the effects of boundary condition see [4, 8].

For each problem we initially compare three diffusivity values ($\varepsilon = 10^{-2}, 10^{-3}, 10^{-4}$) showing the L^2 error evolution with respect to the total number of degrees of freedom (DOF). Additionally, we include evolution with respect to time of computation.

Two polynomial degrees were used (p = 2, 3); enrichment values for Lobatto test spaces are $\Delta p = 0, 1, 2,$ while for B-splines only $\Delta p = 0$ is used. The initial mesh is a single *quad* element with homogeneous refine-

To provide a uniform picture of the refinement processes under different parameters (polynomial degree, enrichment, ϵ) we limit results to 10⁶ DOF, 10⁴ seconds and 200 refinement steps.

Additionally, in order to explore the behavior of proposed EPS STAR norm, we analyze both problems with a more demanding diffusivity $\epsilon = 10^{-5}$, extending our computing limits to larger values.

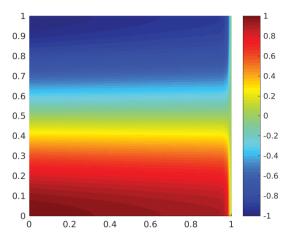


Figure 2: Exact solution, Eriksson–Johnson problem, $\epsilon = 10^{-2}$.

4.1 Example 1: Eriksson-Johnson Problem

Consider the following convection-diffusion equation:

$$\begin{cases} -\epsilon \Delta u + \nabla \cdot (\beta u) = f & \text{in } \Omega = (0, 1)^2, \\ u = u_0 & \text{on } \Gamma, \end{cases}$$

with $\beta = (1, 0)^T$. The following manufactured solution corresponds to a homogeneous case (f = 0):

$$u(x,y) = \frac{e^{r_1(x-1)} - e^{r_2(x-2)}}{e^{-r_1} - e^{-r_2}} \cos \pi y, \quad r_{1,2} = \frac{-1\sqrt{1+4\epsilon^2\pi^2}}{-2\epsilon},$$

which develops a boundary layer next to the boundary at x = 1 (see Figure 2).

It is important to mention that the numbers shown in the legend labels, at the end of each data series, is the refinement step corresponding to the last data point included in the graph.

For $\epsilon = 10^{-2}$, a somewhat "benign" problem (Figures 3 and 4), we see no big differences. With B-splines (BSP in the labels) holding the same error at about the same number of DOF. However, when comparing computation time, for p=2 Lobatto with $\Delta p=2$ requires less time than B-splines; and for p=3 Lobatto with $\Delta p=0$, 1 requires less time than B-splines.

Now for $\epsilon = 10^{-3}$ (Figures 5 and 6), p = 2 B-splines clearly provide better results both ways, error vs DOF and error vs time. For p = 3, B-splines provide similar results to Lobatto with $\Delta p = 2$.

With $\epsilon = 10^{-4}$ (Figures 7 and 8), we start to observe interesting behaviors. For Lobatto not all values of Δp converge; they ($\Delta p = 1$, 2 for p = 2 and $\Delta p = 0$, 2 for p = 3) fail to decrease the L^2 error with subsequent refinement steps.

Therefore, for this problem, we can argue B-splines provide better results than any Lobatto (p, Δp combination) set up.

In Figures 9 and 10 the L^2 error to energy error ratio is shown. It is clear that B-splines tend to the same value (close to the million DOF) across the tested ϵ values; whereas Lobatto does not clearly converge to a single number and its values are at least an order of magnitude greater.

4.1.1 EPS STAR Norm

Figures 11 and 12 show that for this problem, the EPS STAR norm behaves very similarly to the robust norm, except after the million DOF where robust norm with B-splines present a sudden error reduction. Regarding this problem, quasi-optimal test norm shows a slightly better behavior (in particular B-splines)

At the same time, this verifies the improved behavior of B-splines under robust norm.

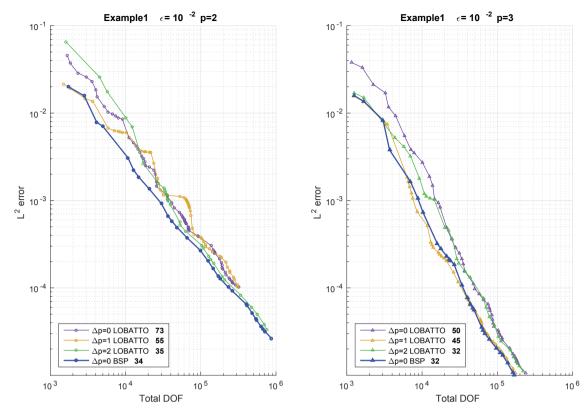


Figure 3: L^2 error vs DOF, $\epsilon = 10^{-2}$, p = 2, p = 3.

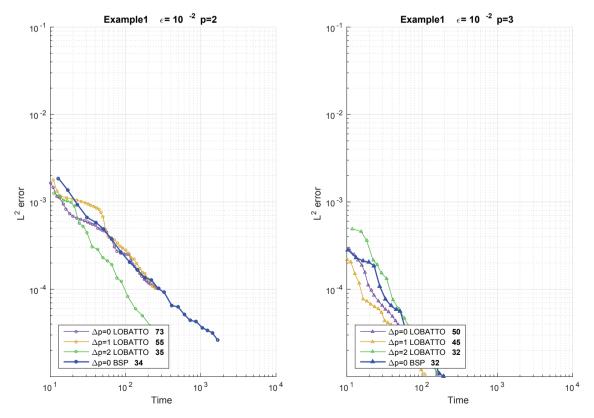


Figure 4: L^2 error vs time, $\epsilon = 10^{-2}$, p = 2, p = 3.

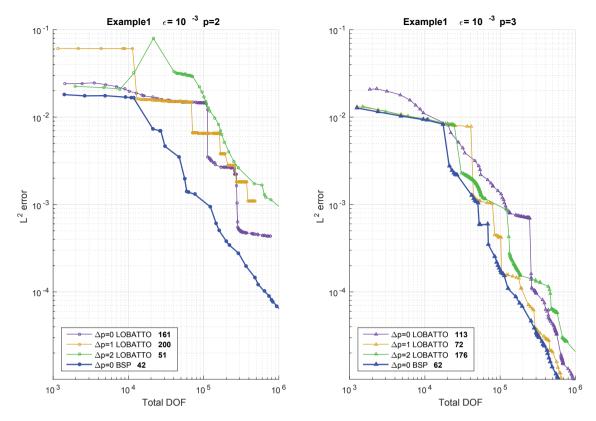


Figure 5: L^2 error vs DOF, $\epsilon = 10^{-3}$, p = 2, p = 3.

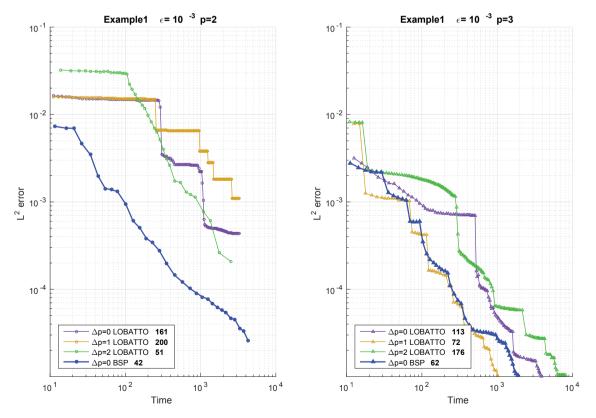


Figure 6: L^2 error vs time, $\epsilon = 10^{-3}$, p = 2, p = 3.

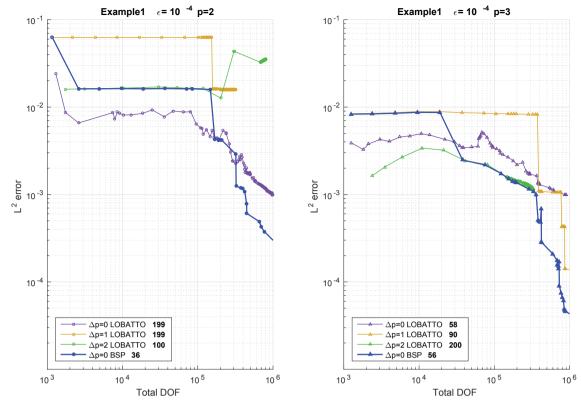


Figure 7: L^2 error vs DOF, $\epsilon = 10^{-4}$, p = 2, p = 3.

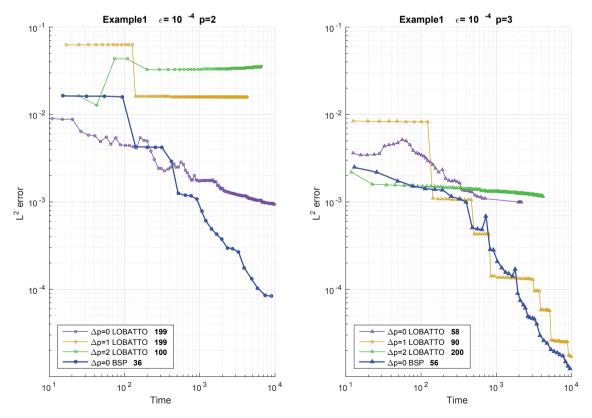


Figure 8: L^2 error vs time, $\epsilon = 10^{-4}$, p = 2, p = 3.

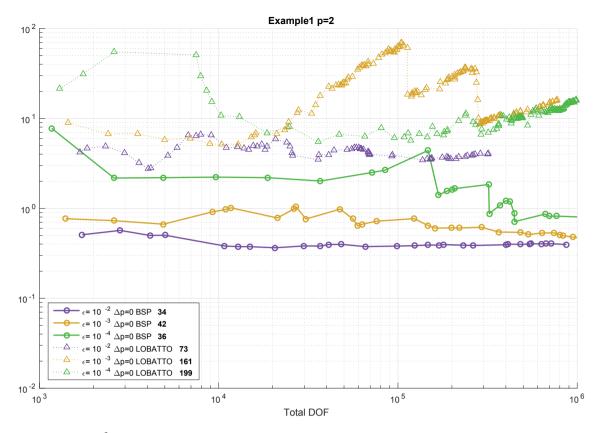


Figure 9: Ratio of L^2 and energy norms, p = 2, $\Delta p = 0$.

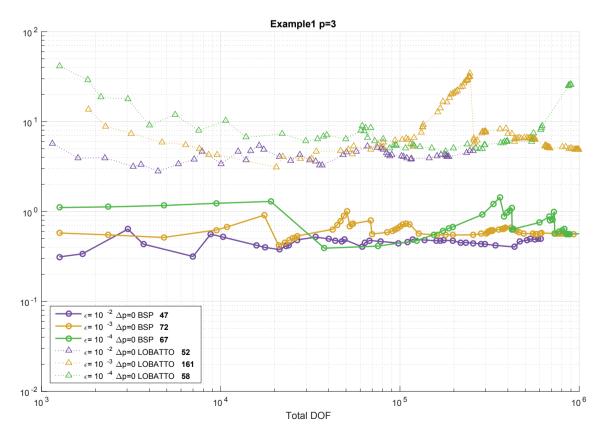


Figure 10: Ratio of L^2 and energy norms, p = 3, $\Delta p = 0$.

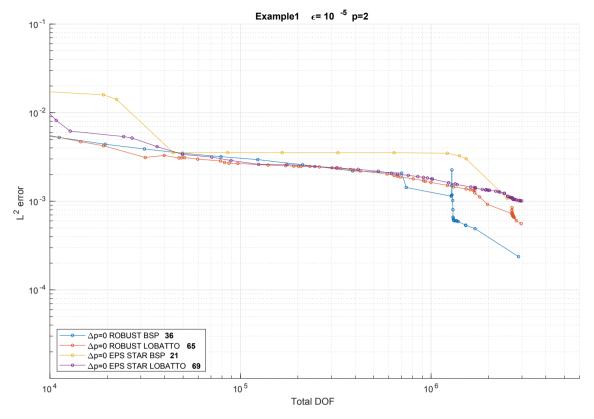


Figure 11: Comparison of EPS STAR norm with robust norm: L^2 error vs DOF, $\epsilon = 10^{-5}$, p = 2.

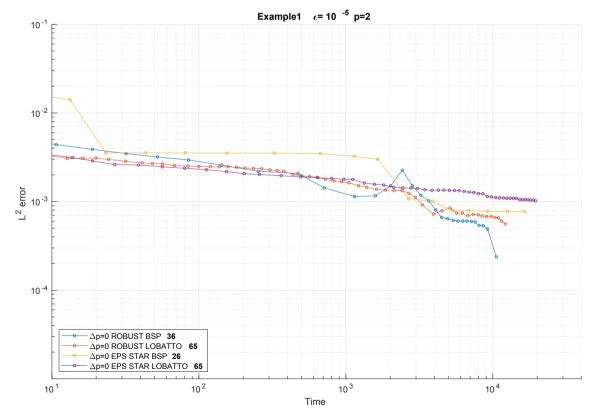


Figure 12: Comparison of EPS STAR norm with robust norm: L^2 error vs time, $\epsilon = 10^{-5}$, p = 2.

4.2 Example 2: Curved Streamlines

Consider the following problem:

$$\begin{cases} -\epsilon \Delta u + \nabla \cdot (\beta u) = f & \text{in } \Omega = (0, 1)^2, \\ u = u_0 & \text{on } \Gamma \end{cases}$$

with

$$\beta = \nabla(e^x \sin y) = e^x (\sin y, \cos y)$$

and f, u_0 such that

$$u(x, y) = \arctan\left(\frac{1 - |(x, y)|}{\epsilon}\right)$$

with inflow boundary at x = 0 and y = 0. The exact solution is shown in Figure 13, and the numerical solution with final mesh is shown in Figure 14 (for illustration purposes).

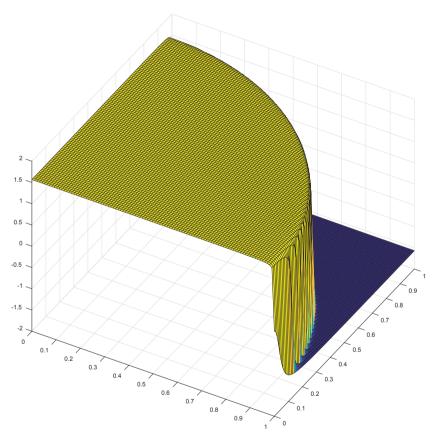


Figure 13: Exact solution, curved streamlines.

For this problem, B-splines and Lobatto (for all Δp values) behave similarly. A few noticeable differences appear for p=2, where Lobatto with $\Delta p=1$ shows slower convergence for the $\epsilon=10^{-3}$ problem (Figure 17). And for the $\epsilon=10^{-4}$ one (Figure 17) convergence stalls at about 3×10^5 DOF. Also in the $\epsilon=10^{-4}$ case (Figure 19), we observe a slightly better L^2 error with B-splines at 10^6 DOF.

Time registers (Figures 16, 18, 20) are only available for $\Delta p = 0$, and we observe no much difference, with B-splines only slightly better in some cases but slightly worse in others.

In Figures 21 and 22 the ratio of L^2 error for the field variables and the energy norm error is shown. In both cases, B-splines approach the same value when close to 10^6 DOF, being this value a whole order of magnitude lower than Lobatto polynomials. The ratio stays uniformly bounded from below, but not from above, however it does converge.

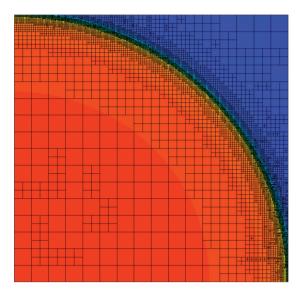


Figure 14: Numerical solution and final mesh for $\epsilon = 10^{-3}$, p = 3.

4.2.1 EPS STAR Norm

Results for p = 2 are shown in Figures 23 and 24. EPS STAR norm behaves considerably better than the robust norm. At 2 million DOF B-splines reach an error close to 0.1 with the EPS STAR norm and 0.3 for the robust norm. Corresponding values for Lobatto polynomials are 0.3 and 0.6. Also convergence over time is improved with the EPS STAR norm, with B-splines trailing behind Lobatto.

With p = 3 (Figures 25 and 26) EPS STAR norm with B-splines observes improved convergence with respect to time and DOF. By 2×10^6 DOF, B-splines with EPS STAR norm reaches less than half the L^2 error than B-splines with robust norm and even better than Lobatto polynomials. It must also be noted that B-splines with EPS STAR norm shows the best behavior when accounting for the computational time.

4.2.2 Continuation Strategy

This strategy was briefly explored with Example 2, p=2 and $\epsilon=10^{-5}$. Constant c was set to 10^{-3} and results are shown in Figures 27 and 28 along with the corresponding results using the robust norm for comparison. The continuation strategy presents slightly smaller error at 4 million degrees of freedom, however, a significant improvement is observed when comparing computation time. The time it takes the Continuation strategy to reach an L^2 error under 10^{-2} is about $\frac{1}{5}$ the time it takes the ROBUST norm (for B-splines).

It is important to highlight that continuation results are actually comparable only in the region where ϵ_i has reached the $\epsilon_{
m orig}$ value, indicated in the figures to the right of the thick vertical line near 8×10^{-3} L^2 error (refer to Section 2.7 for details on this strategy). Although these results are by no means conclusive, we consider this approach presents an interesting behavior, worth being communicated and more deeply studied in the future.

5 Conclusions

We have presented alternative test spaces using B-splines, aiming for robustness of the DPG methodology with optimal test functions for singular perturbation problems. This has previously been numerically verified for specific problems by using specifically tailored norms; while the general (non-problem specific) quasi-optimal test norm has failed this purpose.

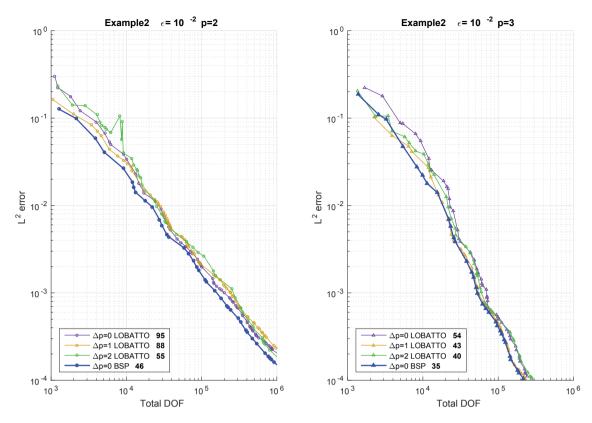


Figure 15: L^2 error vs DOF, $\epsilon = 10^{-2}$, p = 2, p = 3.

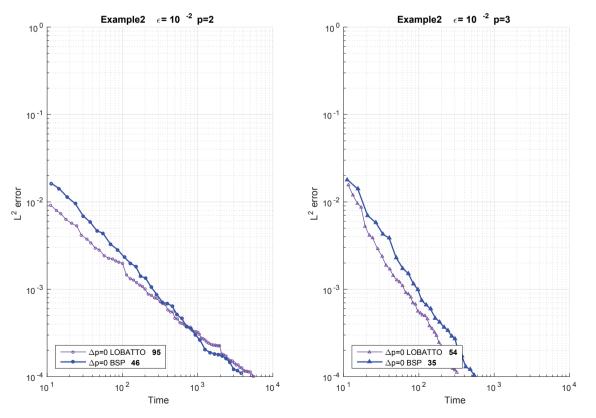


Figure 16: L^2 error vs time, $\epsilon = 10^{-2}$, p = 2, p = 3.

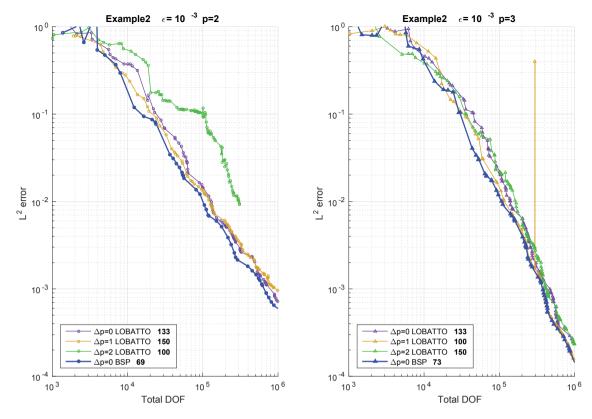


Figure 17: L^2 error vs DOF, $\epsilon = 10^{-3}$, p = 2, p = 3.

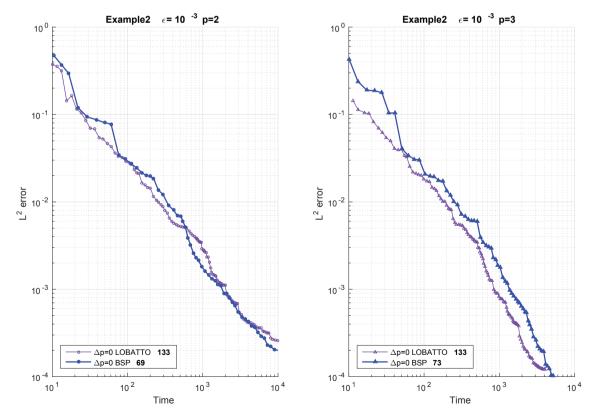


Figure 18: L^2 error vs time, $\epsilon = 10^{-3}$, p = 2, p = 3.

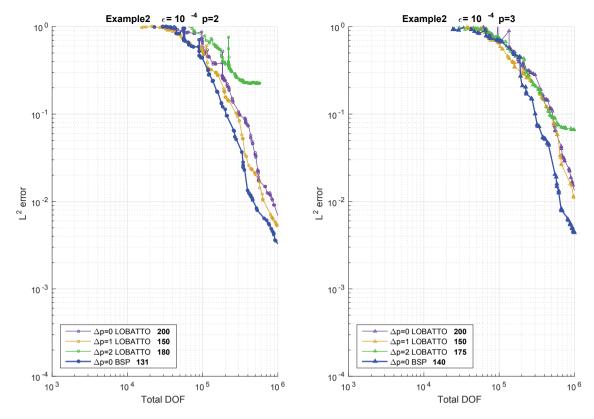


Figure 19: L^2 error vs DOF, $\epsilon = 10^{-4}$, p = 2, p = 3.

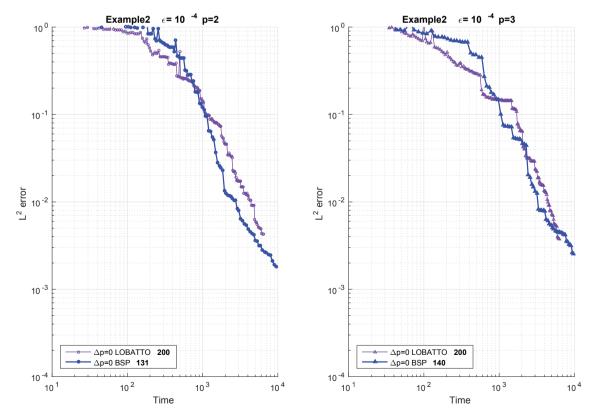


Figure 20: L^2 error vs time, $\epsilon = 10^{-4}$, p = 2, p = 3.

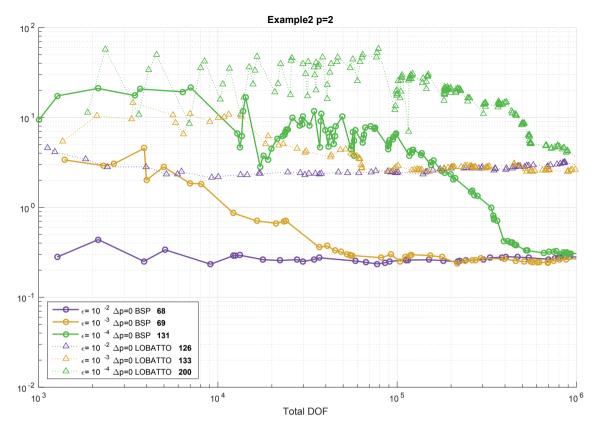


Figure 21: Ratio of L^2 and energy norms. p = 2, $\Delta p = 0$.

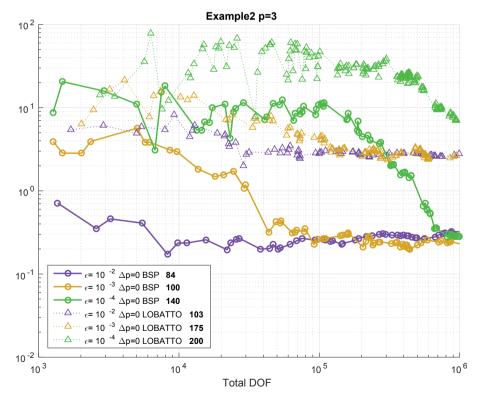


Figure 22: Ratio of L^2 and energy norms. p = 3, $\Delta p = 0$.

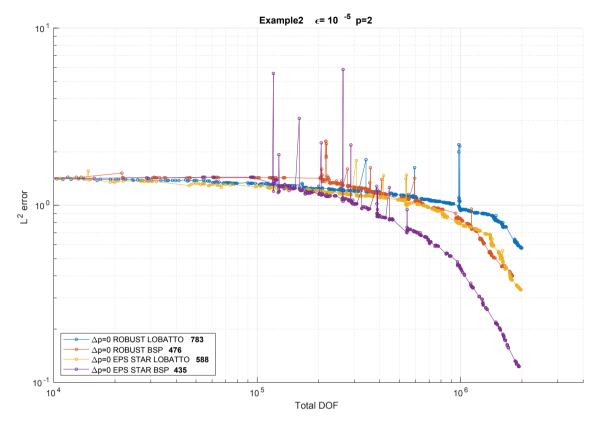


Figure 23: Comparison of EPS STAR norm with robust norm: L^2 error vs DOF, $\epsilon = 10^{-5}$, p = 2.

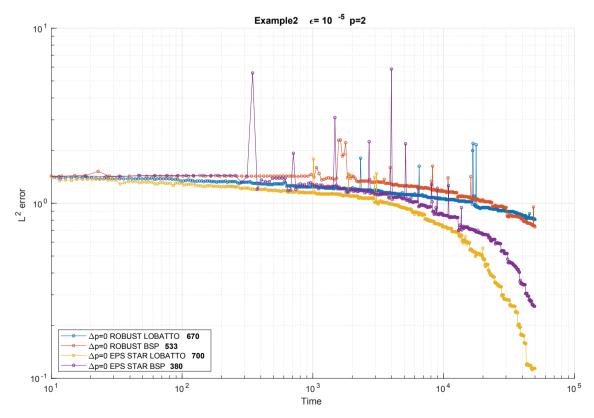


Figure 24: Comparison of EPS STAR norm with robust norm: L^2 error vs time, $\epsilon = 10^{-5}$, p = 2.

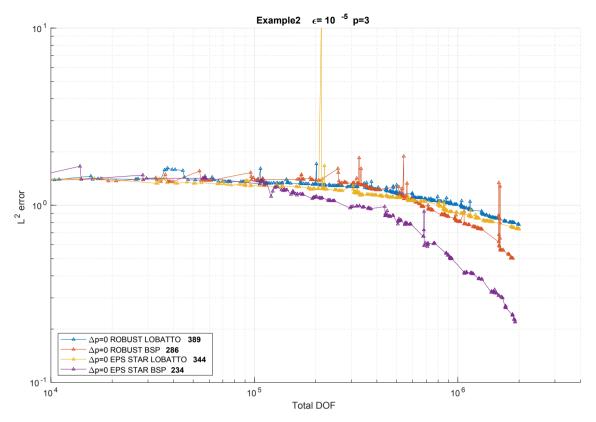


Figure 25: Comparison of EPS STAR norm with robust norm: L^2 error vs DOF, $\epsilon = 10^{-5}$, p = 3.

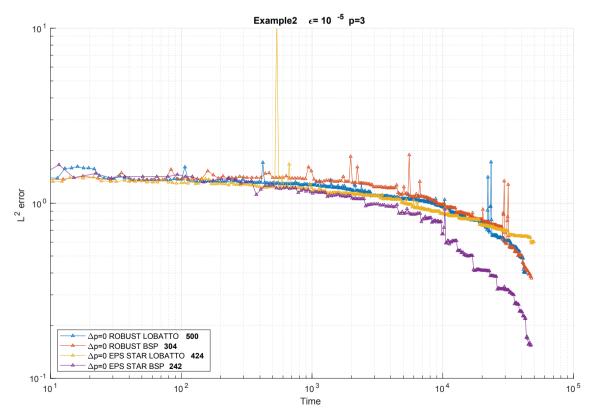


Figure 26: Comparison of EPS STAR norm with robust norm: L^2 error vs time, $\epsilon = 10^{-5}$, p = 3.

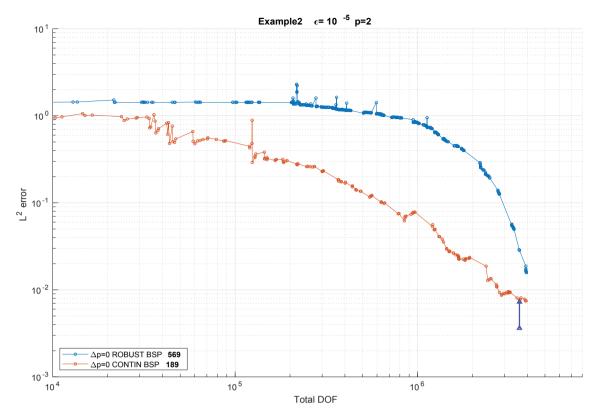


Figure 27: Continuation strategy with robust norm results for comparison: L^2 error vs DOF, p=2. Remark: $\epsilon=10^{-5}$ to the right of the thick vertical line for continuation graph.

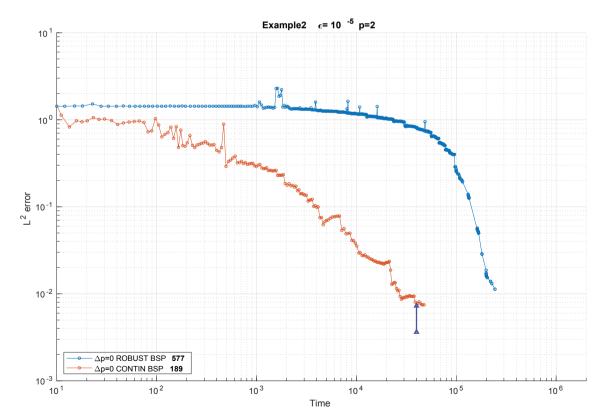


Figure 28: Continuation strategy with robust norm results for comparison: L^2 error vs time, p = 2. Remark: $\epsilon = 10^{-5}$ to the right of the thick vertical line for continuation graph.

When using the quasi-optimal test norm, robustness is automatically given by the DPG methodology (in the ultraweak variational formulation), hence its importance. However, the difficulty shifts to the resolution of the optimal test functions since they develop boundary layers [11].

In order to tackle this hurdle, we propose using a Shishkin sub-mesh and B-splines to discretize the test space. Numerical results for two problems show B-splines to be a very suitable alternative to the commonly used Legendre and Lobatto polynomials (simply referred to as 'Lobatto' only). B-splines results are at worst similar to Lobatto, but much better in some cases (under adaptive refinements). To summarize the results we recall the following findings:

- Regarding **DOF**, B-splines show better convergence under any of the tested scenarios (although several were very similar to Lobatto).
- Regarding **time**, only for one test were Lobatto results (slightly) better than B-splines ($\Delta p = 2$ in Figure 4 left), whereas in a couple (Figures 6 and 8) B-splines were considerably better.
- Regarding the L^2 error to energy error ratio, in both examples we saw B-splines converging (for three different ϵ) to a constant value one order of magnitude smaller than that of Lobatto spaces, implying a better control of the L^2 error.
- Another remarkable outcome is that while for Lobatto test spaces we needed to explore several values of Δp according to each scenario, when using our alternative test spaces $\Delta p = 0$ was a good choice in all cases, therefore removing one variability factor in the method.

Recalling that the B-splines integration strategy herein used was rather non-optimal, leads us to believe that under more efficient integration schemes the time saving could be substantial, and therefore achieving a better overall performance than the conventional test space discretization.

We additionally proposed the EPS STAR norm (modified Adjoint Graph Norm) and a continuation strategy, as means to improve the solution of the most demanding conditions here presented (Example 2 with $\epsilon=10^{-4}, 10^{-5}$). They appear to have good behavior but certainly require further analysis and experimentation.

References

- [1] A. Buffa, J. Rivas, G. Sangalli and R. Vázquez, Isogeometric discrete differential forms in three dimensions, SIAM J. Numer. Anal. 49 (2011), no. 2, 818-844.
- D. Broersen, W. Dahmen and R. P. Stevenson, On the stability of DPG formulattions of transport equations, Math. Comp. 87 (2018), no. 311, 1051-1082.
- C. Carstensen, L. Demkowicz and J. Gopalakrishnan, Breaking spaces and forms for the DPG method and applications including Maxwell equations, Comput. Math. Appl. 72 (2016), no. 3, 494-522.
- J. Chan, N. Heuer, T. Bui-Thanh and L. Demkowicz, A robust DPG method for convection-dominated diffusion problems II: adjoint boundary conditions and mesh-dependent test norms, Comput. Math. Appl. 67 (2014), no. 4, 771-795.
- J. A. Cottrell, T. J. R. Hughes and Y. Bazilevs, Isogeometric Analysis, John Wiley & Sons, Chichester, 2009.
- W. Dahmen and R. P. Stevenson, Adaptive strategies for transport equations, preprint (2018), https://arxiv.org/abs/1809.02055v1.
- [7] L. Demkowicz, Computing with hp Finite Elements. I: One and Two Dimensional Elliptic and Maxwell Problems, Chapman & Hall/CRC Press, New York, 2006.
- L. Demkowicz and J. Gopalakrishnan, An overview of the discontinuous Petrov Galerkin method, Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations, IMA Vol. Math. Appl. 157, Springer, Cham (2014), 149-180.
- [9] L. Demkowicz and J. Gopalakrishnan, Discontinuous Petrov-Galerkin (DPG) method, ICES Report 15-20, The University of Texas at Austin, 2015.
- [10] L. Demkowicz, J. Gopalakrishnan and A. H. Niemi, A class of discontinuous Petrov-Galerkin methods. Part III: Adaptivity, Appl. Numer. Math. 62 (2012), no. 4, 396-427.
- [11] L. Demkowicz and N. Heuer, Robust DPG method for convection-dominated diffusion problems, SIAM J. Numer. Anal. 51 (2013), no. 5, 2514-2537.
- [12] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszyński, W. Rachowicz and A. Zdunek, Computing with hp Finite Elements. II. Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications, Chapman & Hall/CRC, New York, 2007.

- [13] F. Fuentes, B. Keith, L. Demkowicz and S. Nagaraj, Orientation embedded high order shape functions for the exact sequence elements of all shapes, Comput. Math. Appl. 70 (2015), no. 4, 353-458.
- [14] M. K. Kadalbajoo and D. Kumar, Fitted mesh B-spline collocation method for singularly perturbed differential-difference equations with small delay, Appl. Math. Comput. 204 (2008), no. 1, 90-98.
- [15] M. K. Kadalbajoo, A. S. Yadaw and D. Kumar, Comparative study of singularly perturbed two-point BVPs via: Fitted-mesh finite difference method, B-spline collocation method and finite element method, Appl. Math. Comput. 204 (2008), no. 2, 713-725.
- [16] A. H. Niemi, N. O. Collier and V. M. Calo, Automatically stable discontinuous Petrov-Galerkin methods for stationary transport problems: Quasi-optimal test space norm, Comput. Math. Appl. 66 (2013), no. 10, 2096-2113.
- [17] J. T. Oden and L. Demkowicz, Applied Functional Analysis, Chapman and Hall/CRC, New York, 2017.
- [18] M. E. Rognes, R. C. Kirby and A. Logg, Efficient assembly of H(div) and H(curl) conforming finite elements, SIAM J. Sci. Comput. 31 (2009/10), no. 6, 4130-4151.
- [19] G. I. Shishkin, Grid approximation of singularly perturbed elliptic and parabolic equations, Ural Br. Russ. Acad. Sci. Ekaterinburg 727 (1992), 728-729.
- [20] J. Zitelli, I. Muga, L. Demkowicz, J. Gopalakrishnan, D. Pardo and V. M. Calo, A class of discontinuous Petrov-Galerkin methods. Part IV: The optimal test norm and time-harmonic wave propagation in 1D, J. Comput. Phys. 230 (2011), no. 7, 2406-2432.